QUESTIONS
SECTION 1 (50 Marks)
Answer ALL questions from this section
- Evaluate: (2 Marks)
- Solve the equation. (4 Marks)
- The first, third and seventh terms of an increasing arithmetic progression are the three consecutive terms of a geometric progression. If the first term of the arithmetic progression is 10, find the common difference of the arithmetic progression. (3 Marks)
- Find y if log2y – 2 = log292 (3 Marks)
- Rationalize the denominator (3 Marks)
- A contractor employs 40 men to do a piece of work in 60 days each man working 9 hours a day. The contractor is then required to do the same job in 48 days. How many more men working 10 hours a day does he need to employ. (3 Marks)
- A student’s results in six Mathematics tests were: 24, 28, 32, x, 48 and 50. If the median is 36, find the mean mark. (3 Marks)
- Given that the dimensions of a rectangle are 20.0cm and 25.0cm. Find the percentage error in calculating the area. (3 Marks)
- The co-ordinates of the points P and Q are (1,-2) and (4,10) respectively. A point T divides the line PQ in the ratio 2:1
Determine the co-ordinates of T (2 Marks) - A student at a certain college has a 60% chance of passing an examination at the first attempt. Each time a student fails and repeats the examination his chance of passing is increased by 15%.
Calculate the probability that a student in the college passes an examination at the second or at the third attempt. (4 Marks) - What is the exact value of:
(2 Marks)
- A salesman earns a basic wage of KSh. 1500 per week in addition, he is paid commission per week as follows:-
Commission
For sales upto KSh. 50,000 0%
For sales above KSh. 50,000- For the first KSh. 25,000 2%
- For the next KSh. 25000 2½%
- For any amount above KSh.100,000 5%
During that week, he sold goods worth KSh. 115,000. What was his total pay for that week. (4 Marks)
- Two grades of tea A and B costs KSh. 25 and KSh. 28 respectively per kg. They are mixed and the mixtures sold at KSh. 31.20 making a profit of 20%. Find the ratio of A:B in the mixture. (4 Marks)
- The surface area of two similar bottles are 12cm2 and 108cm2 respectively. If the bigger one has a volume of 810cm3. Find the volume of the smaller one. (3 Marks)
- If tan x = 1/√3, Find without tables or calculator,
Sin(90-x) + Cos (90 –x). Leave your answer in surd form in simplest form. (3 Marks) - A regular polygon has the sum of all its interior angles as 1260º. Find the size of each exterior angles in the polygon. (3 Marks)
SECTION II
- A group of people planned to contribute equally towards a water project which needed KSh. 2,000,000 to complete. However, 40 members of the group withdrew from the project. As a result each of the remaining members were to contribute KSh. 2500 more.
- Find the original number of members in the group. (5 Marks)
- 45% of the value of the project was funded by Consistuency Development Fund (CDF). Calculate the amount that would be made by each of the remaining members of the group. (3 Marks)
- Members contribution were in terms of labour provided and money contributed. The ratio of the value of labour to the money contributed was 6:19, calculate the total amount of money contributed by members. (2 Marks)
- 2a + 3b (2 Marks)
- ½a – b (2 Marks)
- If x and y are scalars in the following equation.
xa – yb =, form two equations simultaneously hence solve for x and y. (6 Marks)
- The figure below shows two intersecting circles of centres C and D radii 16cm and 20cm respectively. The two circles substend angles θ1 and θ2 at their centres respectively and intersect at P and Q as shown.
Given that the area of triangle PCQ = 80.14cm2,
Calculate the size of- The angle marked θ1 (2 Marks)
- The angle marked θ2 (3 Marks)
- The area of the shaded region (5 Marks)
- The diagram below represents a solid frustrum consisting of a hemispherical bottom and a conical frustrum at the top.
- Calculate the value of x( height of the smaller one) (2 Marks)
- Calculate:
- Surface area of the solid (4 Marks)
- Volume of the solid (4 Marks)
- Town B is 102km on a bearing of 112º from town A. Town C is 94 km on a bearing of 062º from town B. Town D is 073º from town A and 336º from town C.
- Using a scale of 1cm rep. 20km, draw a diagram to show the positions of towns A, B, C and D.
- Using the diagram in (a) above, determine
- Bearing of town B from town D. (1 Mark)
- Bearing of town A from town C (1 Mark)
- The distance AC and BD (2 Marks)
- A surveyor recorded the measurements of a field in a field book using lines AB 260m as shown below.
B
130
R 40
70
Q 10
50
P 20
S50
10
A
- Sketch the map of the field (4 Marks)
- Find the area of the field in hectares (6 Marks)
- Construct the parallelogram ABCD where AB = 8cm, BC = 6cm angle ABC = 1200. Using a ruler and a pair of compass only. (3 Marks)
- Draw in the diagram diagonals and construct the circumcircle ABD (2 Marks)
- Drop a perpendicular from D to meet AB. Let the perpendicular cut diagonal AC at x. (2 Marks)
- Drop a perpendicular from B to meet DC and cut diagonal AC at Y. (2 Marks)
- Measure XY (2 Marks)
-
- Complete the table below for y = 2x3 + x2 – 5x + 2.
For the interval -3≤x≤3. (2 marks)x
-3
-2
-1
0
0.5
1
2
3
2x3
-54
-2
0.25
16
x2
9
4
0.25
1
-5x
5
0
-2.5
-5
-10
+2
2
2
2
2
2
2
2
2
y
6
50
- Draw the graph of y = 2x3 + x2 – 5x + 2 for the interval -3≤x≤3 (3 Marks)
- Use your graph to solve equation y = 2x3 + x2 – 5x + 2 (1 Mark)
- Use your graph to solve equation y = 2x3 + x2 – 11x – 10 (2 Marks)
- Find the gradient of the curve at x = 2 (2 Marks)
- Complete the table below for y = 2x3 + x2 – 5x + 2.
MARKING SCHEME
No. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
1. | Numerator ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
2. | L.C.M. 10x | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
3. | T1 = 10 + 0d = 10 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
4 | Log2y 2 = Log292 Log2y – Log292 = 2 Log2 (y/92)= 2 y/92 = 22 y = 4 x 92 y = 368 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
5 | ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
6 | Men Days Hours | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
7 | Mean – of six Mean mark | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
8 | Absolute error | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
9 | ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
10 | ![]() P (Second or third) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
11 | 2w(x - 2)2 y + 1 X = 3 Y = 3 + 3 = 6 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
12 | The 1st 25000 = 2500 x 2/100= 500/= | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
13 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
14 | A.S.F = 108:12 = 9:1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
15 | ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
16 | Sum = (2n – 4)90 = 1260 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
17 |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||
18 | ![]() c). Given xa – yb = (-13)
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||
19 | ![]() Sin 19.38 = PX ![]() Sin θ2 = 5.3cm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
20 |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||
21 |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||
22 | ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
23 | ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
24(a) |
B2 If all values | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
24(b) | ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
24(c) - (e) | (c) = (-2,0.5,1)±0.1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Download Mathematics Paper 1 Questions and Answers - Form 3 End Term 3 2022 Exams.
Tap Here to Download for 50/-
Get on WhatsApp for 50/-
Why download?
- ✔ To read offline at any time.
- ✔ To Print at your convenience
- ✔ Share Easily with Friends / Students
Join our whatsapp group for latest updates