Mathematics Questions and Answers - Form 3 Opener Term 1 Exams 2022

Share via Whatsapp

MATHEMATICS 

Instructions

  • This paper has two sections; section A and section B
  • Attempt all the questions in this paper
  • Use of calculators and KNEC mathematical tables may be used except where stated otherwise.

Questions

  1. Using logarithms tables only, evaluate. (4 Marks)
    MathF3ot1q1
  2. Solve the equation (3 Mks)
    x-2 - 3-x = x-2
      3      4       2
  3. A tourist arrived in Kenya with sterling pound (€) 4680 all of which he exchanged into Kenyan shillings. He spent ksh. 52,352 while in Kenya and converted the rest of the money into US dollars. Calculate the amount he received in US dollars. The exchange rates were as follows. (3mks)
    Currency                      Buying              Selling
    USṨ                              65.20               69.10
    Sterling pound €          123.40             131.80
  4. Solve for the value of x (3Mks)
    23x-2 × 8x = 4(x+1)
  5. A line passes through the point whose coordinates are A(1,3) and B (-2,-1) find the equation of the line (3 Mrks)
  6. Express MathF3ot1q6as a fraction. (3mks)
  7. Use reciprocal and square tables to evaluate, to 4 significant figures, the expression. . (3Marks)
        1     – 4.1512
    0.3654
  8. The diagonal of a square measures 44cm.Calculate the perimeter of the square. 3mrks
  9. Calculate; [3mks]
    2.61 x 21.83 x 0.073
        61.72 x 11.73
  10. Patrick spent 2/5 of his salary on food, 1/3 of the remainder on electricity and saved the rest.
    1. What fraction of his salary did he save? (2mrks).
    2. If he spent Sh. 1,200 on food, how much did he spend on electricity? (2Mks)
  11. Solve the following simultaneous equation (3 Mks)
    5x+6y=28
    3x+4y=18
  12. Two similar containers have base areas of 750 cm2 and 120cm2 respectively. Calculate the volume of the larger container in liters given that the volume of smaller container is 400 cm3 (3 Mrks).
  13. If r=5, s=2, and t=3, find the value of; (3mks)
       r²+s²-t
         t3
  14. A farmer has three containers of capacity 12L, 15L and 21L, calculate the capacity of:
    1. The smallest container which can be filled by each one of them an exact number of times (2 Mrks).
    2. The largest container which can fill each one of them an exact number of time.(2 Mks)
  15. Given that tan x = ¾, find Cos(90-x) (2 Mks).
  16. The two arms of a pair of compass of dividers are spread so that the angle between them is 45°.Find the area of the sector formed if the length of the arm is 8.4cm.Take π = 22/7.(3marks)

SECTION II (50 MARKS)
ANSWER ALL QUSTIONS

  1. An amount of money was shared among five girls, Alice, Jane, Brenda, Mary and Ivy. Alice got 1/8 of the total amount while Jane got 2/5 of the remainder. The remaining amount was shared equally among Brenda, Mary and Ivy each getting ksh.490.
    1. How much did Jane get? (3mks)
    2. How much was shared among the three girls. (3mks)
    3. Alice, Jane and Ivy invested their money and earned a profit of ksh.3640. a half of the profit was left to maintain the business and the rest shared according to their investments. Calculate how much each got. (4mks)
  2. A surveyor recorded the measurements of a field book using xy=400m as the base line as shown below
                                    Y
       To E 200             320
                                  210               150 To D
       To F 205             170               150 To C
                                     50               225 To B
                                    X
    1. Use a scale of 1 cm to represent 50 m to draw the map of the field. (5 Mks)
    2. Find the area of the field in hectares (5 Mks)
  3.     
    1. On the grid provided, draw the square whose vertices are A(6,-2) B(7,-2) C(7,-1) and D(6,-1). (2mrks)
    2. On the same grid draw;
      1. A’B’C’D’, the image of ABCD under an enlargement scale factor 3centre (9,-4). (4mrks)
      2. A”B”C”D”, the image of A’B’C’D’ under a rotation of +900 about (0,0). (4 mrks)
  4. A pail is in the shape of a container frustrum with base radius 6cm and top radius 8cm. The slant height of the pail is 30cm as shown below. The pail is full of water.
    MathF3ot1q20
    1. Calculate the volume of water in the pail. (6mks)
    2. All the water is poured into a cylindrical container of circular radius 7cm, if the cylinder has the height of 35cm, calculate the height of the cylinder above the water level, which is not in contact with water. (4mks)
  5. The sides of a triangular plot of land are 170m, 190m and 210m, but the altitudes of the plot as well as the angles are not known. Find
    1. The area of the plot in Hectares 5mks
    2. The angles of the plot 5mks

Marking Scheme

  1.     
    No log
    849.6
      2.41
    2.9292
    0.3820

    3941
    3.3112
    3.5956
      1.7156
    ÷       3
      1.9052
    = 8.039 x 10-1
    = 0.8039  
  2.   (x-2/3)12 - (3-x/4)12 = (x-2/2)12
    4x - 8 - 9 + 3x = 6x -12
    7x -17 = 6x 02
    7x -6x = 17-2
    x=5

  3. £ 4680 x 123.40 = 577512
    spent  → 52352
    Balance = 525160
    525160 = 7600
      69.10
    US Dollar = 7600

  4. 23x-2 x 23x = 22(x+1)
    23x-2 x 23x = 22x+2
    23x-2+2x = 2x+2
    6x-2= 2x+2
    4x =  4
     2      4
    x=1

  5. G= ΔY/ΔX 
      1-3    =  -4   4  
          -2-1        -3       3
    Taking a point A(1,3)
    and (x,y)
     4   y-3  
     3        x-1
    4(x-1) = 3(y-3)
    4x-4= 3y-9
    y= 4x/3 + 5/3

  6. Let 1.523523 be r
    1523.523...= 1000r
    1000r = 1523.523523...
        r    = 1.523523...
    999r = 1522
     r = 1522/999
    1 523/999

  7. 1/0.3634 - 4.1512
    1/0.3654 → 2.737
    4.1512 → 17251
    2.737 - 17.251
    = -14.494

  8. 442 = x2 + x2
    442 = x2
    1936 2x2
      2          2
    x= 968
    x= 31.11
    P = L+L+L+L
    = 31.11 x 4
    1245.45cm

  9. 2.61 x 21.83 x 0.073 x 107
          61.72 x 11.73  107
    = 0.00575

  10. Food=2/5
    Electricity = 1 - 2/5 = 3/5 x 1/3 - 1/5
    Savings = 1 - {2/5 + 1/5}= 2/5
    2/→ 1200
    1/3 →
    ¹/₅ x 1200
     2/5
    = Sh. 600

  11. ( 5x + 6y = 28) 3
    (3x + 4y = 18 )5
    15x + 18y = 84
    15x + 20y =90
     -2y = -6
         y=3
    5x + 18 =28
    5x + 10
    x=2
    y=3, x=2

  12. A.S.F = 750/120 = 25/4
    L.S.F = √25/= 5/2
    V.S.F = 125/8
       V₁   = 125
     400       8
     V₁ = 400 x 125 6250
               8                1000
    6.25 Litres

  13. 5² + 2² - 3 = 25 + 4 - 3
      33                   27
    = 26/27

  14.          
    1. L.C.M of 12,15 and 21
      = 420
    2. G.C.D = 12, 15 and 21= 3
  15.  2 > 3-x > 5
    2> 3-x
    x>3-2  → x>1
    3-x > 5
    -x <5 -3 → +x<2
    x<2
    1< x < 2

  16. 45/360 x 22/7 x 8.4 x 8.4
    1/8 x 22 x 1.2 x 8.4
    = 27.72

  17.            
    1. Alice = 1/8
      Jane 2/5 of ( 1 -1/8) = 7/20
      Brenda, Mary , Ivy - @ 490 x 3 = 1470
      21/40
      21/40 → 1470
       7/20  → ?
      1470 x ⁷/₂₀
          21/40
      Jane = Ksh 980

    2. Amount shared
      = 490 x 3= 1470

    3. Alice amount = 1/8 x 2800 = 350   -- 1820
      Ivy                 →                    490 
      Jane              →                    980 
      Profit shared = 3640 = 1820
                                 2
      Alice =    350    x 1820 = 350
                   1820
      Jane   980   x 1820 = 980
               1820
      Ivy =    490   x 1820 = 490
               1820
  18.               
    1.    
      MathF3ot1qa18a

    2. A - Right angled Δ.A= 1/2bh = 1/2 x 184.5 = 2.25cm2
      B - TRapezeur = 1/2(A+B)h = 1/2 x (3+45)2.4 = 9cm2
      C - Rectangle = LxW = 0.8 x 3= 2.4cm2
      D - Right- angled Δ = 1/2 x 3 x 3.8 = 5.7 cm2
      E - ..... = 1/2 x 1.6 4 = 3.2cm2
      F Trapezium = 1/2(5+4)3 = 13.5cm2
      G Right Angled Δ = 1/2 x 3.4 x 1 = 8cm2
      Total area = 44/55cm2
      1cm rep 50m = 11135m2 = 11.1375ha
                                10000
  19.                 
    1.   
      MathF3ot1qa19

  20.                    
    1. 8/6 = 30 + x
                   x
      8x = 180 + 6x
      2x = 180
      x= 90cm
      h= 902 - c2
      h= 89.80cm
      H2 = 1202 - 82
      H= √1400 - 64
      V1 = 1/3 x 22/7 x 8 x 8 x 119.25 = 8027.61
      V2 = 1/3 x 22/7 x 6 x 6 x 89.80 = 3386.74
      Volume of the frustrum = V1 - V2
      = 8027.61 - 3386.74
      = 4640.87cm3
    2. V= 4640.87
      V of the cylinder = πr2h
      22/7 x 7 x 7 xh = 4640.87 cm2
      h= 4640.87 = 30.14cm
               154
      35cm - 30.14
      = 4.86cm 
              
  21.                      
    1. A = √s(s-a)(s-b)(s-c)
      s= 1/2(120 + 190 + 210) = 285
      A=√285(285-210)(285-190)(285-190)
      A= √285(75)(95)(115)
      A = √233521875
      = 15281.42255m2
                 10,000
      1.528ha

    2. A= 1/2abSinC
      Sin C = Area       15281.42      
                   1/2ab    1/2 x 210 x 190
      Sin C = 0.76598
      <C = 49.99°
      Sin B =    Area   
                   1/2 ac
              15281.42         = 0.8561
           1/2 x 210 x 170
      <B = 58.88°
      <A = (180) - (4999 + 58.88°)
      = 71.13°

Download Mathematics Questions and Answers - Form 3 Opener Term 1 Exams 2022.


Tap Here to Download for 50/-




Why download?

  • ✔ To read offline at any time.
  • ✔ To Print at your convenience
  • ✔ Share Easily with Friends / Students


Join our whatsapp group for latest updates
.
Subscribe now

access all the content at an affordable rate
or
Buy any individual paper or notes as a pdf via MPESA
and get it sent to you via WhatsApp

 

What does our community say about us?

Join our community on:

  • easyelimu app
  • Telegram
  • facebook page
  • twitter page
  • Pinterest