INSTRUCTIONS TO CANDIDATES
- This paper consists of two sections: Section I and Section II.
- Answer all questions in section I and Section II.
- Show all the steps in your calculations, giving your answers at each stage in the spaces below each question.
- Marks may be given for correct working even if the answer is wrong.
SECTION I (50 Marks)
Answer all the questions in this section
- Evaluate (−4 of (−4 + −5÷15)+ −3−4÷2) (3 marks)
(84÷-7+3− −5) - Muya had 6 2/3 hectares piece of land. He donated 7/8 hectare to a school and 1½ hectare to a children home .The rest of the land was shared equally between the son and the daughter. Find the size of the land that each child got. (3 marks)
- Without using mathematical table or calculate evaluate 1.9 ×0.032 (3 marks)
20 × 0.0038 - The shopping centres Miseleni and Katheka are 17 km apart. Kioko walks towards Miseleni at an average speed of 9 km/h. Forty-five minutes later Cherono cycles from Katheka towards Miseleni at an average speed of 30 km/h. Calculate the distance from Miseleni when Cherono catches up with Kioko. (4 marks)
- Use logarithm tables to evaluate (4 marks)
17212 × √0.024
321 - Solve for the value of x which satisfy the equation; (3 marks)
32x − 3 × 8x+4 = 64 × 2x - Moraa spends a total of Ksh. 970 on buying 3 text books and 5 pens. If she had bought 2 textbooks and 8 pens, she would have saved Ksh. 90. Find the cost of one text book. (3 marks)
- A piece of wire is to be divided into 20cm or 24cm or 28cm for construction and leave 15 cm piece .Find the shortest length of the wire (3 marks)
- Given that 3x is an acute angle and sin 3x = cos 2x find the value of x. (3 marks)
- A retailer buys 30 boxes of strawberries at sh. 30 each and sells 27 boxes at 30% profit. How much profit does he make? (3 marks)
- Factorize then simplify (3 marks)
2bx − 2by + 3ax − 3ay
3a+2b - The base of an open rectangular tank is 3.2m, by 2.8 m .Its height is 2.4m .It contains water to a depth of 1.8m. Calculate the surface area inside the tank that is not in contact with water. (3 marks)
- An empty 300 ml bottle has a mass of 270g. Calculate the mass of the bottle when it is full of a liquid whose density is 1.1gcm-3 (3 marks)
- Evaluate the expression below using reciprocal tables and give your answer to two decimal places. (3 marks)
6 + 2
321 0.042 - By factor method find the cube root of the following;
- ∛8 (1 mark)
- ∛64 (2 marks)
- Simplify the expression (3 marks)
2x2 + 3x − 2
x2 − 4
SECTION II (50 Marks)
Answer all the questions in the spaces provided
- The height in centimeters of 18 form one students are shown below
132 132 156 147 162 168 174 141 136 161 148 152 140 174 162 143 154 174 - Using a class width of 10 and starting with a class of 130 – 139 as the first class make a frequency distribution table (2 marks)
- State the modal class (1 mark)
- Modify the above table and calculate
- Mean height (4 marks)
- Median height (3 marks)
- The figure below shows two circle of radii 8cm and 6cm with center P and Q respectively.
The circles intersect at point A and B. The lines PQ and AB are perpendicular to each other and meet at X. If the common chord AB is 9 cm, calculate- ∠AQB (2 marks)
- ∠APB (2 marks)
- Area of segment whose centre is P (2 marks)
- Area of segment whose centre is Q (2 marks)
- Area of the region between the intersecting circles (2 marks)
- A kite has vertices A(1,1),B(6,2),C(6,6) and D(2,6).
- Draw the kite ABCD. (1 mark)
- On the same axes draw,
- A'B'C'D' the image of ABCD under a rotation of a positive quarter turn about the origin. State its coordinates. (3 marks)
- A'' B''C''D'' the image of A'B'C'D' under a reflection in the line y−x=0. State its coordinates. (3 marks)
- A'''B'''C'''D''' the image of A''B''C''D'' under enlargement of scale factor −0.5 about the origin. State its coordinates. (3 marks)
-
- A line L passes through the points A(−2,3) and B(−1,6)
- Find the gradient of the line L (1 mark)
- Find the equation of the line L in the form y=mx+c (2 marks)
- A second line P is perpendicular to line L at point (−1,6) .Find the equation of line P in the form ax + by=c (2 marks)
- Given that a third line Q is parallel to line L and passes through point (1,2). Find the equation of lines Q in the form ax+by = c (2 marks)
- Find the point of intersection of lines P and Q (3 marks)
- A line L passes through the points A(−2,3) and B(−1,6)
- On the graph provided draw the region that satisfies the following linear inequalities. (10 marks)
2x − y≥ −4
x+y≤4
y≥0
x<3

MARKING SCHEME
No | Working | Remarks | |||||||||||||||||||||||||||||||||
1 | N⟹−4×(−4+ −1/3)+ −3−2
=171/3 − 5
=121/3
D⟹84 ÷ −7 + 3 + 5 = −4
N/D⟹37/3× −1/4 = −31/12
|
M1 M1 A1 |
|||||||||||||||||||||||||||||||||
2 | Land donated = 7/8 + 3/ = 19/8
Land shared = 20/3 − 19/8 = 103/24
Land each child gets = ½ × 103/24 = 27/48 hectares
|
M1 M1 A! |
|||||||||||||||||||||||||||||||||
3 | 1.9 × 0.032 × 104 20 × 0.0038 × 104 = 19×32
20×38 = 4/5
|
M1 M1 A1 |
|||||||||||||||||||||||||||||||||
4 | Distance between the two at the same time = 9 × 0.75 = 6.75 km
Relative speed = 30 − 9 = 21km/hr
Time taken = 6.75 = 0.321 hrs
21 Distance = 6.75 × 30 = 9.64 km
21 Distance from Miseleni =17− 9.64 = 7.36 km
|
M1 M1 M1 A1 |
|||||||||||||||||||||||||||||||||
5 |
|
B1 – all correct logs
B1 – addition and subtraction
B1 – square root
B1 – final correct answer
|
|||||||||||||||||||||||||||||||||
6 | 25(x-3) × 23x+12 = 26+x
25x −15 + 3x+12 = 26+x
5x − 15 + 3x +12 = 6 + x
7x = 9
x = 1 2/7
|
M1 M1 A1 |
|||||||||||||||||||||||||||||||||
7 | 3b + 5p = 970 ....... (i)
2b + 8p = 880 ....... (ii)
From (i) b = 970 − 5p
3 Thus 2 (970 − 5) + 8p = 880
3 2(970 − 5p) + 24p = 2640
14p = 700
p = 50
b = 970 − 250 = 240
3 Cost of a book = Sh. 240
|
B1 – both equations M1 A1 |
|||||||||||||||||||||||||||||||||
8 | 20 = 22 × 5
24 = 23 × 3
28 = 22 × 7
LCM of 20, 24 & 28 = 23 × 3 × 5 × 7 = 840
Length of the wire = 840 + 15 = 815 cm
|
B1 M1 A1 |
|||||||||||||||||||||||||||||||||
9 | For complementary angles, A + B = 90°
3x + 2x = 90°
5x = 90°
x = 18°
|
B1 M1 A1 |
|||||||||||||||||||||||||||||||||
10 | Buying price = 30 × 30 = Sh.900
Selling price = 27 × 1.3 × 30 = Sh.1053
Profit =1053 − 900 = Sh.153
|
M1 – both B.P & S.P M1 A1
|
|||||||||||||||||||||||||||||||||
11 | 2b(x − y) +3a(x − y)
3a+2b
= (3a+2b)(x − y)
(3a+2b) = x − y
|
M1 M1 A1 |
|||||||||||||||||||||||||||||||||
12 | Total surface area = (0.6×2.8×2) + (3.2×0.6×2)
= 3.36+3.84
= 7.2 m2
|
M1 M1 A1 |
|||||||||||||||||||||||||||||||||
13 | Mass = 300 × 1.1=330 g
Total mass = 270 + 330 = 600g ≅ 0.6kg
|
M1 M1 A1 |
|||||||||||||||||||||||||||||||||
14 | 1 = 3.115× 10-3 321
1 = 2.38 × 101 0.042 (6 × 3.115 × 10-3) + (2 × 2.381 × 101)
0.01869 + 47.62
≅ 47.64 (2 d.p)
|
M1 - both values M1 A1 |
|||||||||||||||||||||||||||||||||
15 |
|
B1 M1 A1 |
|||||||||||||||||||||||||||||||||
16 |
2x2 + 3x − 2 ⟹ (2x−1) (x+2)
x2 − 4 ⟹ (x − 2)(x + 2)
2x2 + 3x − 2 = (2x−1)(x+2)
x2 − 4 (x−2)(x+2) = 2x − 1
x − 2 |
M1 M1 A1 |
|||||||||||||||||||||||||||||||||
17 |
|
B2 - correct table B1 - modal class B2 - f & fx column M1 A1 M1M1 A1 |
|||||||||||||||||||||||||||||||||
18 |
|
M1 A1 M1 A1 M1 A1 M1 A1 M1A1 |
|||||||||||||||||||||||||||||||||
19 | |
||||||||||||||||||||||||||||||||||
20 |
|
B1 M1 A1 M1 A1 M1 A1 M1 M1 A1 |
|||||||||||||||||||||||||||||||||
21 | 2x − y ≥ −4 x + y ≤ 4 y ≥ 0
x < 3
|
B3 – Table, line & shading
B3 - Table, line & shading
B2 – line & shading
B2 – line & shading
|
Download Mathematics Questions and Answers - Form 3 Mid Term 1 Exams 2023.
Tap Here to Download for 50/-
Get on WhatsApp for 50/-
Why download?
- ✔ To read offline at any time.
- ✔ To Print at your convenience
- ✔ Share Easily with Friends / Students
Join our whatsapp group for latest updates