Further Logarithms - Mathematics Form 3 Notes

Share via Whatsapp
{YouTube}bTvMx9I62d8{/YouTube}


Introduction

If y = athen we introduce the inverse function logarithm and define logy=x (Read as log base a of  y equals x).

In general

y = ax ⇔ logy=x

Where ⇔means “implies and is implied by” i.e. it works both ways!

Note this means that, going from exponent form to logarithmic form:

10= 100 ⇒ log10 (100) = 2 10-1=0.01 ⇒ log10 (0.01) = -2
100 = 1 ⇒ log10 (1) = 0 25 =32 ⇒ log(32) = 5
9½ = 3 ⇒ log(3) = ½ 8 = 4 ⇒ log(4) = ⅔

And in going from logarithmic form to exponent form:

log10 (10) = 1 ⇒ 10= 10 log10 (0.001) = -3 ⇒ 10-3=0.001
log(1) = 0 ⇒ 2= 1 log(81) = 4  ⇒ 34 = 81
log100 (10) = ½ ⇒ 100½ =10 log(5√5) = 3/2 ⇒ 53/2 = 5√5


Laws of Logarithms

Product and Quotient Laws of Logarithms

The Product Law

loga (M×N) = loga M + loga N

The Quotient Law

log a (M/N) = loga M − loga N

Example.

log6 9 + log8 − log6 2

= log6 72 − log6 2
= log6 (72/2) = log36
= 2

The Power Law of Logarithms

Loga Mn = nloga M

Example.

2log 5 + 2log 2

= log 52 + log 22

= log 25 + log 4

= log 100 = log10100

= 2

Logarithm of a Root

logb x1/n = 1/n logb x  or  logb n√x = logx
                                                         n

Example.

log3 5√27 ⇒ log3 271/5 ⇒ 1/5log3 27 = 1/5(3) = 3/5

Proof of Properties

Property Proof Reason for Step
1. logb b = 1 and logb 1 = 0 b1 = b and b0 = 1 Definition of logarithms
2. (product rule)
logb xy = logb x + logb y
a. Let logb x = m and logb y = n
b. x = bm and y = bn
c. xy = bm × bn
d. xy = bm + n
e. logb xy = m + n
f. logb xy = logb x + logb y
a. Setup
b. Rewrite in exponent form
c. Multiply together
d. Product rule for exponents
e. Rewrite in log form
f. Substitution
3. (quotient rule)
logb x/y = logb x − logb y
a. Let logb x = m and logb y = n
b. x = bm and y = bn
c. x/y = bm
            bn
d. x = bm−n
    y
e. log
b x/y = m − n
f. log
b x/y = logb x − logb y
a. Given: compact form
b. Rewrite in exponent form
c. Divide
d. Quotient rule for exponents
e. Rewrite in log form
f. Substitution
4. (power rule)
logb xn = nlogb x
a. Let m = logb x so x = bm
b. xn = bmn
c. logb xn = mn
d. log
b x= nlogb x
a. Setup
b. Raise both sides to the nth power
c. Rewrite as log
d. Substitute
5. Properties used to solve log equations:
a. if b
x = by, then x = y
b. if log
b x = logb y, then x= y
a. This follows directly from the properties for exponents.
b. 
i. logb x - logb y = 0
ii. logb x/y = 0
iii. x/y=b0
iv. x/y =1 so x = y
b. i. Subtract from both sides
ii. Quotient rule
iii. Rewrite in exponent form
iv. b
0 = 1


Solving Exponential and Logarithmic Equations

By taking logarithms, and exponential equation can be converted to a linear equation and solved.

We will use the process of taking logarithms of both sides.

Example.

4x = 12

log 4x = log 12

xlog 4 = log 12

x = log 12
      log 4

x= 1.792

Note;

  • A logarithmic expression is defined only for positive values of the argument. 
  • When we solve a logarithmic equation it is essential to verify that the solution(s) does not result in the logarithm of a negative number.
  • Solutions that would result in the logarithm of a negative number are called extraneous, and are not valid solutions.

Example.

Solve for x:

log(x+1) + log5 (x − 3) = 1 → (the 1 is the same as log5)

log(x+1)(x − 3) = log5

(x+1)(x − 3) = 5

x2 − 2x − 3 − 5 = 0

x2 − 2x − 8 = 0

(x−4)(x+2) = 0

x = 4, x= −2(extraneous)

Verify:

log5 (4+1) + log5 (4 − 3) = 1
log5 + log1 = 1
1+0=1

log5 (-2+1) + log5 (-2 − 3) = 1
log-1 + log-5 not possible



Solving Equations Using Logs

Examples

  1. Solve the equation 10x =3.79

    The definition of logs says if If y = ax then logy=x or y = a⇔ logy=x
    Hence 10x = 3.79 ⇒ xc= log10 3.79 = 0.57864 (to 5 decimal places)
    Check 100.57864 = 3.79000 (to 5 decimal places)

    In practice from we take logs to base 10 giving
    log10 10x = log10 3.79
    xlog10 10 = log10 3.79
    x = 0.57864
  2. Solve the equation 32x = 56
    log10 32x = log10 56
    2xlog10 3 = log10 56
    2x = log10 56 = 3.66403
            log10 3
    x= 1.83201
    Check 33 = 27, 34 = 81, we want 32x so the value of 2x lies between 3 and 4 or 3<2x<4 which means x lies between 1.5 and 2. This tells us that x= 1.83201 is roughly correct.
  3. Solve the equation 4x = 3x+1
    x log10 4 = (x+1)log10 3
    x log10 4 = xlog10 3 +  log10 3
    x log10 4 − xlog10 3 = log10 3
    x(log10 4 − log10 3) = log10 3
    x =         log10 3          = 3.8188
           log10 4 − log10 3

    Check 4x = 43.8188 ≈ 44 = 256 and 3x+1 = 34.8188 ≈ 35 = 243 are very close!

    Note you could combine terms, giving,
    x =         log10 3          =  log10 3  = 3.8188
           log10 4 − log10 3      log10 4/3
  4. Solve the equation
    4x+6 = 35 − 2x

    Take logs of both sides            log 4x+6 = log 35 − 2x
    (x+6)log 4 = (5 − 2x)log 3
    Expand brackets                     xlog 4 + 6log 4 = 5log 3 − 2xlog 3
    Collect terms                          xlog 4 + 2xlog 3 = 5log 3 − 6log 4
    Factorise the left hand side and divide    x=  5log 3 − 6log 4 =   −0.78825
                                                                     log 4 + 2log 3
    (Note you get the same answer by using the ln button on your calculator.)

    Check 4x+6 = 4−0.78825+6 = 45.21175 = 1373.368 and 35 −2(−0.78825) = 36.576498 = 1373.368

    Notice that you could combine the log-terms in 5log 3 − 6log 4
    to give log (35 ÷ 46)
                                                                         log 4 + 2log 3             log (4 × 32)

    It does not really simplify things here but, in some cases, it can.
  5. Solve the equation
    7(3x−1) = 2(52x+1)

    Take logs of both sides                      log 7 + (x − 1)log 3 = log 2+ (2x+1)log 5
    Expand brackets                               log 7 + xlog 3 − log 3 = log 2+ 2xlog 5 + log 5
    Collect terms                                    xlog 3 − 2xlog 5 = log 2 + log 5 + log 3 − log 7
    Factorize left hand side                      x(log 3 − 2 log 5) = log 2 + log 5 + log 3 − log 7
    simplify                                            xlog (3/52) = log ((2 × 5 × 3)/7)
                                                           xlog (3/25) = log (30/7)
    divide                                               x = log (30/7) = −0.686371
                                                                 log (3/25)
    Check

    LHS = 7(3x−1) ≈ 7(3−0.686371−1) ≈ 7×3−1.7 ≈ 7/32 ≈ 7/(taking 31.7 ≈ 32 = 9)
    RHS = 2(52x+1) = 2(52×−0.686371+1) ≈ 2 × 5−0.42/50.4 = 2/√5 ≈ 1 (taking  50.4 ≈ 50.5 = √5 = 2.2...)

    The values of LHS and RHS are roughly the same. A more exact check could be made using a calculator.


Logarithmic Equations and Expressions

Consider the following equations

log381 = x and logx 8 = 3

The value of x in each case is established as follows 

log381 = x
Therefore 3x = 81
3x = 34
x =4

log8 = 3
x
3 = 8
x3 =
23
x = 2

Example

Solve log2

Solution

Let log62 = t. then 6t= 2

Introducing logarithm to base 1 0 on both sides

log 6t = log 2
t log 6 = log 2
t = log 2
     log 6
t = 0.3010
     0.7782
t = 0.3868
Therefore log62 = 0.3868

Example

22x + 3(2x) − 4 = 0

Taking logs on both sides cannot help in getting the value of x, since 22x + 3(2x) cannot be combined into a single expression.

However if we let 2x = y then the equation becomes quadratic in y.

Solution

Thus, let 2x = y…………….. (1 )
Therefore
y2 + 3y − 4 = 0…………………(2)
(y + 4)(y - 1) = 0

y = − 4 or y = 1
Substituting for y in equation (1 );
Let
2x = -4 or let 2x = 1

There is no real value of x for which 2x = -4 hence 2x = 1= 2thus x = 0

Example

Solve for x in (log10x)2 = 3 − log10x2

Solution

Let log10x = t……………………….(1)
Therefore t2 = 3 − 2t
t
2 + 2 t − 3 = 0 solve the quadratic equation using any method
t2 + 3t − t - 3 = 0
t(t + 3) - 1(t − 3) = 0
(t − 1)(t + 3) = 0
t = 1 or t = − 3
Substituting for t in the equation (1 ).
log10x = 1 or log10x = −3
10
1 = x or 10-3= x
x = 10 or 1/1000

Note;

log    1   
             log
a b



Past KCSE Questions on the Topic

  1. Solve for (log3x)2 – ½ log3x = 3/2
  2. Find the values of x which satisfy the equation 52x – 6 (5x) + 5 =0
  3. Solve the equation
    Log (x + 24) – 2 log 3 = log (9 – 2x)
  4. Find the value of x in the following equation 49(x+1) + 7(2x) = 350
  5. Find x if 3 log 5 + log x2 = log 1/125
  6. Without using logarithm tables, find the value of x in the equation
    Log x3 + log 5x = 5 log2 – log 2/5
  7.  
    1. Given that P = 3y express the questions 3(2y -1) + 2 x 3(y-1) = 1 in terms of P
    2. Hence or otherwise find the value of y in the equation: 3(2y -1) + 2 x 3(y-1) = 1
Join our whatsapp group for latest updates

Download Further Logarithms - Mathematics Form 3 Notes.


Tap Here to Download for 50/-




Why download?

  • ✔ To read offline at any time.
  • ✔ To Print at your convenience
  • ✔ Share Easily with Friends / Students


Get on WhatsApp Download as PDF
.
Subscribe now

access all the content at an affordable rate
or
Buy any individual paper or notes as a pdf via MPESA
and get it sent to you via WhatsApp

 

What does our community say about us?

Join our community on:

  • easyelimu app
  • Telegram
  • facebook page
  • twitter page
  • Pinterest