Approximation of Area Questions and Answers - Form 4 Topical Mathematics

Share via Whatsapp
Download PDF for future reference Join our whatsapp group for latest updates

Questions

  1. Use trapezoidal rule to estimate the area bounded by the curve y = 8 + 2x – x2 for -1 ≤ x ≤ 3 using 5 ordinates
  2.  
    1. Using trapezoidal rule, estimate the area under the curve y = ½x2 – 2 between x = 2 and x = 8 and x-axis. Use six strips 
    2.  
      1. Use integration to evaluate the exact area under the curve
      2. Find the percentage error in calculating the area using trapezoidal rule 
  3. The figure below shows the graphs of y = 2x + 3 and y = -2x2+ 3x + 4 
    approximation q4
    1. determine the co-ordinates of Q, the intersection of the two graphs
    2. Find the exact area of the shaded region 
  4. The table below shows some values of the function; y = x2 + 2x – 3 for -6≤ x ≤ -3 
     x -6  -5.75  -5.5 -5.25  -5  -4.75 -4.5  -4.25 -4.0 -3.75 -3.5 -3.25 -3.0
     y  21 18.56    14.06    10.06  8.25    5   2.25 1.06 0

    1.  complete the table 
    2. using the completed table and the mid-ordinate rule with six ordinates, estimate the area of the region bounded by the curve; y = x2 + 2x – 3 and the lines y = 0 , x = -6 and x = -3
    3.  
      1. by integration find the actual are of the region in (b) above 
      2. Calculate the percentage error arising from the estimate in (b) 
  5. Complete the table below for y = 5x2 – 2x + 2. Estimate the area bounded by the curve, the x – axis, the lines x = 2 and x = 7 using the trapezoidal rule with strips of unit length. 
     x 2.5  3.5  4.5  5 5.5 6 6.5
     y 18      56.25  74    117     200.25  

Answers

  1. h = 3 - - 1 = 4 = 0.8
             5         5
    -1  -0.2  0.6 1.4 2.2 3
    5 7.56  8.84  8.84  7.56  5
    A= ½(0.8) (5 + 5 ) + 2 ( 7.56 + 8.84 + 8.84 + 7.56)
    = 0.4 [10+ 2(32.8)]
    = 0.4 x 75.6
    = 30.24 sq. units
    1. yo= 0
      y1 = 2.5
      y2 = 6
      y3 = 10.5
      y4 = 16
      y5 = 22.5
      y6 = 30
      A= ½ x 1(0+30) + 2(2.5 + 6 + 10.5 + 16 + 22.5)
      = ½ x 145= 72.5
    2. ½ x2 – 2 = x3– x
                       6
      = 83 – 8 – 23 - 2
         6           6
      = 77.33 - -0.67
      = 78 square units
    3.  % error = 72.5 – 78 x 100
                           78
      = -7.05%
    1. -2x2 + 3x + 4 = 2x + 3
      -2x
      2 + x +1 = 0
      - 2x
      2 + 2x – x + 1 = 0
      (x-1) (-2x-) =0
      x = 1 or x = -½
      when x = 1 y = 2x 1 + 3 =5
      Q (1 , 5)
    2.  -2x2 + 3x + 4)dx – (2x+3)dx
    1.  
      X -5.5 -5 -4.25 -3.75
      y 16.25 12 6.56 3.56
    2. A = 0.5 (18.56 + 14.06 + 10.06 + 6.56 + 3.56 + 1.06)
      = 0.5 X 53.86 = 26.93
      1. x1 + 2x - 3
        [x
        3 + x2 – 3x]-3
        3
        = [ (-3)
        3 + (-3)2 – 3(-3) ]
               3
        = 9 + 18= 27 square units
      2. 27 – 26.93 X 100
            27
        = 0.25925 % = 0.2593 %

  2. x 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
    y 18 28.
    25
    4
    1
    56.
    25
    7
    4
    94.
    25
    1
    1
    7
    142
    .25
    1
    7
    0
    20
    0.2
    5
    23
    3
    Area{ = ½ n (y0 + yn) + 2(y1 + …………} yn - 1
    = ½{(1) (18 + 233) + 2(41 + 74 + 55 + 170)}
    = ½ {251 + 2(340)}
    = ½ (251 + 680)
    = ½ (831)
    = 415.5 sq. units


Download Approximation of Area Questions and Answers - Form 4 Topical Mathematics.


Tap Here to Download for 50/-


Read 3220 times Last modified on Wednesday, 10 February 2021 07:21

Leave a comment

Make sure you enter all the required information, indicated by an asterisk (*). HTML code is not allowed.

Print PDF for future reference